Discovery of carbon-capturing organism in hot springs could lead to efficient way of absorbing climate-heating gas

Article Link (by Damian Carrington)

A microbe discovered in a volcanic hot spring gobbles up carbon dioxide “astonishingly quickly”, according to the scientists who found it.

The researchers hope to utilise microbes that have naturally evolved to absorb CO2 as an efficient way of removing the greenhouse gas from the atmosphere. Ending the burning of fossil fuels is critical in ending the climate crisis, but most scientists agree CO2 will also need to be sucked from the air to limit future damage.

The new microbe, a cyanobacterium, was discovered in September in volcanic seeps near the Italian island of Vulcano, where the water contains high levels of CO2. The researchers said the bug turned CO2 into biomass faster than any other known cyanobacteria.

In February the team also explored hot springs in the Rocky Mountains in Colorado, US, where levels of CO2 are even higher. Those results are now being analysed. The researchers said all their data on microbes would be published and made available to other scientists as a database that pairs DNA sequences with banked samples of the bacteria.

Dr Braden Tierney, at Weill Cornell Medical College and Harvard Medical School, said: “Our lead collaborator at Harvard isolated this organism that grew astonishingly quickly, compared to other cyanobacteria.”

“The project takes advantage of 3.6bn years of microbial evolution,” he said. “The nice thing about microbes is that they are self-assembling machines. You don’t have that with a lot of the chemical approaches [to CO2 capture].”

The new microbe had another unusual property, Tierney said: it sinks in water, which could help collect the CO2 it absorbs.

But the microbe was not a silver bullet, Tierney said. “There really isn’t a one-size-fits-all solution to climate change and carbon capture. There will be circumstances where the tree is going to outperform microbes or fungi. But there will also be circumstances where you really want a fast-growing aquatic microbe that sinks,” he said. That might include large, carbon-capturing ponds, he said. The microbe might also be able to produce a useful bioplastic.

The project was funded by the biotechnology company Seed Health, which has also employed Tierney as a consultant. The company already sells probiotics for human health, has developed a probiotic for bees and is researching the use of microbial enzymes to break down plastics.

“Seed Health was founded on the belief that by unlocking the immense potential of the microbiome, we possess the power to make transformative strides in human and planetary health,” said its co-chief executive Raja Dhir. “Our work with Dr Tierney is exactly in line with that mission and may help to unlock new models [for] carbon capture.”

The idea of using bacteria to capture CO2, potentially enhanced by genetic engineering, is an active research area. A recent review suggested that bacteria could produce useful chemicals, as well as trapping CO2, saying: “Using modified bacteria to manage CO2 has the added benefit of generating useful industrial byproducts like biofuels, pharmaceutical compounds, and bioplastics.”

The US company LanzaTech already uses bacteria to convert CO2 into commercial fuels and chemicals. The UK-based CyanoCapture, backed by Shell and Elon Musk, is harnessing cyanobacteria to produce biomass and biological oils. Numerous companies are working on using algae to produce biofuels, although ExxonMobil ended its research on this recently.

When biofuels are burned, the CO2 captured returns to the atmosphere. But research at Lawrence Berkeley National Laboratory in the US is exploring the use of bacteria to precipitate carbon-capturing minerals from seawater, locking up the CO2. This work is based on a catalyst enzyme that is also being examined by scientists in China, who are looking at hot vents on the ocean floor for heat-resistant enzymes.

Bacteria found in caves have also been shown to turn CO2 into minerals. Other scientists are aiming to use bacteria to cut CO2 emissions from cement production.


Published by RenSun Lee

Kia ora! Sustainability is at the core of my soul ever since I was a kid. I always strive to finish the food on my plate and live as a minimalist. I love to cut down on waste in order to live sustainably and harmoniously with our planet. This brings me to my passion as a Food Scientist to integrate new technologies into innovative and creative solutions to meet customer demands and market trends and to optimize products and processes for quality, savings and sustainability. To these goals, I have published a Journal on my work on sustainable packaging and patented a new Antimicrobial wash. Nothing is more satisfying than working hard and smart at the workplace and playing hard outside of working hours. I enjoy rejuvenating myself through spending quality time with my two adorable kids and my awesome soul mate and getting close to nature when possible, be it gardening, tramping or going to the beach. I also love to learn about our magnificent universe and how sustainability is working in the grand scheme of things. I strongly believe that Work, Life & Balance is the key to a healthy state of mind, both physically and mentally. I look forward to making a positive difference wherever and whenever I can. Through this Blog, I hope to catalog recent Food Trends and Food Technologies that I come across so that anyone who is interested can have access to it (articles and resources). Please use these resources at your discretion. On top of that, I would also like to share related news and technologies of the future that would help mankind advance towards a Type 1 Civilization. Please feel free to contact me if you would like to share and contribute to the “Resources“. I would like to thank you in advance for dropping by. I sincerely hope that you can benefit from the recent Food Trends and Food Technologies I catalogued. Kind regards | Ngā mihi RenSun Lee

Leave a Reply

Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

%d bloggers like this: